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A series of rate constant expressions for nonadiabatic proton-coupled electron transfer (PCET) reactions are
analyzed and compared. The approximations underlying each expression are enumerated, and the regimes of
validity for each expression are illustrated by calculations on model systems. In addition, the kinetic isotope
effects (KIEs) for a series of model PCET reactions are analyzed to elucidate the fundamental physical principles
dictating the magnitude of the KIE and the dependence of the KIE on the physical properties of the system,
including temperature, reorganization energy, driving force, equilibrium proton donor-acceptor distance, and
effective frequency of the proton donor-acceptor mode. These calculations lead to three physical insights
that are directly relevant to experimental data. First, these calculations provide an explanation for a decrease
in the KIE as the proton donor-acceptor distance increases, even though typically the KIE will increase with
increasing equilibrium proton donor-acceptor distance if all other parameters remain fixed. Often the proton
donor-acceptor frequency decreases as the proton donor-acceptor distance increases, and these two effects
impact the KIE in opposite directions, so either trend could be observed. Second, these calculations provide
an explanation for an increase in the KIE as the temperature increases, even though typically the KIE will
decrease with increasing temperature if all other parameters remain fixed. The combination of a rigid hydrogen
bond, which corresponds to a high proton donor-acceptor frequency, and low solvent polarity, which
corresponds to small solvent reorganization energy, allows the KIE to either increase or decrease with
temperature, depending on the other properties of the system. Third, these calculations provide insight into
the dependence of the rate constant and KIE on the driving force, which has been studied experimentally for
a wide range of PCET systems. The rate constant increases as the driving force becomes more negative
because excited vibronic product states associated with low free energy barriers and relatively large vibronic
couplings become accessible. The ln[KIE] has a maximum near zero driving force and decreases significantly
as the driving force becomes more positive or negative because the contributions from excited vibronic states
increase as the reaction becomes more asymmetric, and contributions from excited vibronic states decrease
the KIE. These calculations and analyses lead to experimentally testable predictions of trends in the KIEs for
PCET systems.

I. Introduction

Proton-coupled electron transfer (PCET) plays an important
role in a wide range of chemical and biological processes. PCET
reactions involve the coupled transfer of both an electron and
a proton. According to the general definition of PCET, the
mechanism can be either sequential or concerted, and the elec-
tron and proton can transfer in different directions or in the same
direction, either between the same sites or between different
sites. This paper focuses on the broad class of PCET reactions
that involve the transfer of an electron and a proton with no
stable intermediate. These types of PCET reactions have been
extensively studied both experimentally1-20 and theoretically.21-30

The fundamental properties of PCET systems can be char-
acterized by measuring the kinetic isotope effect (KIE), which
is the ratio of the rate for hydrogen to the rate for deuterium.
The experimentally observed magnitudes of the KIE, as well
as the dependence of the KIE on properties such as temperature
and driving force, vary widely for different PCET systems.
Numerous theoretical models have been developed to describe
these experimental data.17-30 Many of these models build upon

previous theoretical studies of electron transfer31,32 and vibra-
tionally nonadiabatic proton transfer reactions.33-36

In this paper, we analyze and compare a series of rate constant
expressions for nonadiabatic PCET reactions. We enumerate
the approximations underlying each expression and illustrate
the regimes of validity for each expression through calculations
on model systems. In addition, we analyze the KIEs for a series
of model systems to elucidate the fundamental physical prin-
ciples dictating both the magnitude of the KIE and the
dependence of the KIE on the properties of the system.
Specifically, we examine the impact of the proton transfer
interface properties (i.e., the equilibrium proton donor-acceptor
distance and the effective frequency of the proton donor-acceptor
mode) on the KIE. We also study the dependence of the KIE
on the solvent reorganization energy, the temperature, and the
driving force. These calculations and analyses lead to physical
insights that assist in the interpretation of existing experimental
data and provide experimentally testable predictions of trends
in the KIEs.

An outline of this paper is as follows. In Section II, we present
a series of rate constant expressions and discuss the approximations
underlying each expression. In Section III, we analyze these rate
constant expressions by applying them to model PCET systems.

† Part of the “Max Wolfsberg Festschrift”.
* To whom correspondence should be addressed. E-mail: shs@

chem.psu.edu.

J. Phys. Chem. A 2009, 113, 2117–2126 2117

10.1021/jp809122y CCC: $40.75  2009 American Chemical Society
Published on Web 01/30/2009



This analysis illustrates the regimes of validity for each rate constant
expression and elucidates the dependence of the KIE on the
physical properties of the system, including temperature, reorga-
nization energy, driving force, equilibrium proton donor-acceptor
distance, and effective frequency of the proton donor-acceptor
mode. Section IV summarizes the new physical insights that are
directly relevant to experimental data and the experimentally
testable predictions provided by these calculations.

II. Theory

A. Rate Constant Expressions. In this paper, we use a series
of vibronically nonadiabatic rate constant expressions that have
been derived previously.25,27 In this formulation, the PCET
reaction is described in terms of nonadiabatic transitions between
pairs of reactant and product mixed electron-proton vibronic
states. The rate constant expressions are based on Fermi’s golden
rule formalism in conjunction with linear response theory for
the solvent environment. For simplicity, we use the term solvent
to denote both solvent and protein. The detailed derivations of
these rate constant expressions are presented elsewhere. Here
we simply present the final expressions and discuss the
approximations underlying each expression.

In the derivations of the rate constant expressions, the
nonadiabatic coupling between the reactant and product vibronic
states is approximated to be of the form

Vµν(R))Vµν
(0)exp[-Rµν(R-Rjµ)] (1)

where Rjµ is the equilibrium value of R for the reactant state µ,
Vµν

(0) is the vibronic coupling between reactant state µ and product
state ν at distance R ) Rjµ, and Rµν is the exponential decay
parameter. This form of the coupling is a reasonable approxima-
tion in the region of R near its equilibrium value.37 In the
electronically nonadiabatic limit for proton transfer, the vibronic
coupling is of the form Vµν(R) ) VelSµν(R), where Vel is the
electronic coupling and Sµν(R) is the overlap between the reactant
and product proton vibrational wave functions for states µ and
ν at a distance R.30,38 In this limit, Vµν

(0) ) VelSµν
(0) in eq 1, where

Sµν
(0) is the overlap at the distance Rjµ and the parameter Rµν

describes the approximately exponential decay of the overlap
with R near Rjµ.

Using the short-time, high-temperature approximation for the
solvent modes and representing the R-mode time correlation
function by that of a quantum mechanical harmonic oscillator,
the rate constant can be expressed as:27

kquant )∑
µ

Pµ∑
ν

|Vµν
(0)|2

p2Ω
exp[2λµν

(R)�
pΩ ] ×

∫-∞

∞
dτ exp[-1

2
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with the dimensionless parameters defined as
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Here the summations are over reactant and product vibronic
states, � ) 1/kBT, Pµ is the Boltzmann probability for the
reactant state µ, λ is the solvent reorganization energy, ∆Gµν

0 is
the free energy of reaction for states µ and ν, λµν

(R) is the coupling
reorganization energy defined as λµν

(R) ) p2Rµν
2 /2M, and M and

Ω are the R-mode effective mass and frequency, respectively.
The free energy of reaction is often expressed as ∆Gµν

0 ) ∆G0

+ ∆εµν, where ∆G0 ≡ ∆G00
0 and ∆εµν is the difference between

the product and reactant vibronic energy levels ν and µ relative
to their respective ground states. The short-time, high-temper-
ature approximation for the solvent is valid when the solvent
reorganization energy λ is large enough to ensure that the
dynamics of the solvent fluctuations are fast on the time scale
of the coherent nonadiabatic transitions. These expressions also
assume that the solvent reorganization energy is the same for
all pairs of reactant/product vibronic states and that the
equilibrium proton donor-acceptor distance is the same for all
reactant and product states. Furthermore, the inner-sphere
reorganization energy for the intramolecular solute modes can
be added to the solvent reorganization energy in the high-
temperature (low-frequency) limit for these modes.25,39-41 These
approximations are valid for the majority of homogeneous PCET
systems of interest, and eq 2 will be used as a benchmark for
the more approximate methods discussed below.

This rate constant expression can be simplified in certain
limiting regimes pertaining to the R-mode frequency. In the
high-temperature (low-frequency) limit for the R mode (pΩ ,
kBT), the rate constant has the form27,42

khighT )∑
µ

Pµ∑
ν

|Vµν
(0)|2

p
exp[2kBTRµν

2

MΩ2 ]� π
(λ+ λµν

(R))kBT
×

exp[- (∆Gµν
0 + λ+ λµν

(R))2

4(λ+ λµν
(R))kBT ] (4)

This high-temperature rate constant expression is derived from
eq 2 by performing a short-time expansion of the trigonometric
functions up to second order and evaluating the time integral
analytically.

In the low-temperature (high-frequency) limit for the R mode
(pΩ . kBT), the rate constant has the form:27

klowT )∑
µ

Pµ∑
ν

|Vµν
(0)|2

p � π
λkBT

exp[ pRµν
2

2MΩ] ×

exp[- (∆Gµν
0 + λ)2

4λkBT ] (5)

This low-temperature rate constant expression is derived from
eq 2 using the stationary phase method and is valid only in the
strong solvation regime (i.e., λ > |∆Gµν

0 | for all relevant pairs
of states). An equivalent expression can be obtained by
averaging the squared vibronic coupling over the ground-state
vibrational wave function of the R-mode earlier in the derivation.

An alternative rate constant expression attributed to Kutz-
netsov and Ulstrup33 has been implemented by Klinman and
others to study PCET reactions in enzymes.19,20 This expression
is based on the Marcus theory rate constant for nonadiabatic
electron transfer modified by the inclusion of R-dependent
Franck-Condon overlap terms for the transferring hydrogen,
thermally averaged over a Boltzmann distribution for R. This
expression is of the form

kUK )∑
µ

Pµ∑
ν

|Vel|2

p � π
λkBT

×

exp[- (∆Gµν
0 + λ)2

4λkBT ]∫0

∞
P(R)[Sµν(R)]2dR (6)

where P(R) ) √MΩ2 / 2πkBTexp[ - MΩ2(R - Rj)2⁄(2kBT)] is
the Boltzmann probability for a classical harmonic oscillator
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representation of the R-mode. Note that the normalization
constant for the Boltzmann probability assumes integration over
all values of R; this assumption is reasonable because P(R) is
negligible for negative values of R. The Marcus theory rate
constant for nonadiabatic electron transfer with the Franck-
Condon overlap terms is based on the treatment of an intramo-
lecular solute mode quantum mechanically in the low-
temperature (high-frequency) limit, and this solute mode is
assumed to be uncoupled from the solvent.39-41 Thus, eq 6 is
based on the reasonable assumption that the proton vibrational
frequency is in the high-frequency regime relative to the thermal
energy, as well as the additional assumption that the proton
motion is not coupled to the solvent. Furthermore, the thermal
averaging procedure with the classical Boltzmann probability
used in eq 6 is valid only in the high-temperature (low-
frequency) limit for the R-mode.

The rate constants kUK and khighT become identical when the
vibronic coupling is assumed to be the product of an electronic
coupling and the proton vibrational wave function overlap (i.e.,
Vµν ) VelSµν), the overlap is assumed to decrease exponentially
with R near its equilibrium value (i.e., Sµν ) Sµν

(0)exp [-Rµν(R -
Rjµ)]), and λµν

(R) , λ.43 Since λµν
(R) is inversely proportional to the

mass M corresponding to the R-mode, the difference between
kUK and khighT is smaller for larger M. Note that both of these
rate constant expressions are strictly valid only in the low-
frequency regime for the R-mode, where pΩ , kBT.

B. Kinetic Isotope Effects. In the high-temperature (low-
frequency) regime for the R-mode, the KIE has a simple form
if the reorganization energy and driving force are independent
of isotope, only the ground reactant and product vibronic states
contribute to the rates, and λµν

(R),λ. In this case, the KIE is of
the form44

KIE ≈
|SH|2

|SD|2
exp[- 2kBT

MΩ2
(RD

2 -RH
2 )] (7)

where SH and SD represent the overlaps of the hydrogen and
deuterium ground state wave functions, and RH and RD represent
the exponential dependence of these overlaps on R. The
temperature dependence of the KIE can be analyzed from the
derivative of the ln[KIE] with respect to temperature:

d
dT

ln[KIE] ≈-
2kB

MΩ2
(RD

2 -RH
2 ) (8)

The simple expressions in eqs 7 and 8 enable the analysis of
qualitative trends pertaining to the magnitude and temperature
dependence of the KIE, but we emphasize that they are valid
only when excited vibronic states do not contribute to the rates
and in the low-frequency regime for the R-mode.

For all of the rate constant expressions given above, the KIE
depends strongly on the equilibrium R value and the frequency
Ω of the R-mode. Equations 7 and 8 can be used to examine
qualitative trends when only the ground reactant and product
vibronic states contribute to the rates in the low-frequency
regime for the R-mode. In this case, eq 7 indicates that the KIE
is proportional to the ratio of the overlaps for hydrogen and
deuterium. These overlaps are depicted in Figure 1a for Morse
potentials representing the reactant and product proton potential
energy curves. This figure illustrates that the hydrogen overlap
is greater than the deuterium overlap for the same value of R.
In general, the overlap between the reactant and product
vibrational wave functions decreases as R increases for both
hydrogen and deuterium. However, the overlap decreases much
faster with R for deuterium than for hydrogen due to the larger

mass of deuterium, so this ratio becomes larger as R increases.
Figure 1b illustrates these effects for the ground reactant and
product vibrational wave functions in Figure 1a. Thus, if all
other quantities remain the same, the KIE increases as the
equilibrium R value increases. Moreover, since the overlap
decreases faster with R for deuterium than for hydrogen, RD >
RH, and the overall quantity in the exponential of eq 7 is
negative. Therefore, if all other quantities remain the same, the
magnitude of the KIE will increase as the frequency Ω increases.
The physical basis for this trend is that a higher frequency
typically does not enable effective sampling of smaller distances.

The inclusion of excited vibronic states will influence these
general trends. Figure 1b also depicts the ratio of overlaps for
the ground reactant and first excited product vibrational states.
For excited vibrational states, the overlap is greater, and
therefore the ratio of hydrogen to deuterium wave function
overlaps is smaller, than for the ground reactant and product
vibrational states. In addition, the excited states often contribute
more for deuterium than for hydrogen because the splittings
between the energy levels are smaller for deuterium. Thus,
contributions from excited vibronic states tend to decrease the
magnitude of the KIE.

To analyze the temperature dependence of the KIE, we focus
on the ln[KIE] because this quantity is directly related to the
difference in the apparent activation energies for deuterium and
hydrogen transfer. Specifically, the derivative of ln[KIE] with
respect to the inverse temperature is proportional to ED - EH,
where ED and EH are the apparent activation energies for
deuterium and hydrogen transfer, respectively (i.e., EH is
proportional to the derivative of ln[kH] with respect to inverse
temperature). Equation 8 indicates that the ln[KIE] will decrease
with temperature in the high-temperature (low-frequency) limit
for the R-mode with only the ground vibronic states contributing.

Figure 1. (a) Proton potential energy curves and the associated
hydrogen (solid) and deuterium (dashed) vibrational wave functions
for the ground reactant (blue) and product (red) states. The proton
potential energy curves are Morse potentials with the parameters given
in the text. The proton donor-acceptor distance is 2.7 Å. (b) Square
of the ratio of the hydrogen and deuterium overlaps for the ground
reactant and product vibrational states 0/0 (black) and the ground
reactant and first excited product states 0/1 (red) as functions of the
proton donor-acceptor distance R. Note that (SH/SD)2 increases dramati-
cally as R increases and is significantly smaller for the 0/1 pair of states.
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Moreover, the temperature dependence of ln[KIE] will increase
as the frequency Ω decreases in this regime. A more detailed
analysis of these trends will be presented below by calculations
on model systems.

We will also analyze the dependence of the rate constant and
KIE on the driving force ∆G0. For this purpose, we derive an
approximate expression for the KIE in the vicinity of ∆G0 ) 0 in
the high-temperature (low-frequency) limit for the R-mode, as-
suming again that the reorganization energy and driving force are
independent of isotope and that only the ground reactant and
product vibronic states contribute to the rates. Performing a Taylor
series of ln [kH

highT] and ln [kD
highT] about ∆G0 ) 0 and retaining

terms up to second order in ∆G0 leads to:

ln(kL
highT

kL
0 ))- ∆G0

2kBT
- (∆G0)2

4(λ+ λR
L)kBT

(9)

where kL
0 with L ) H or D is the high-temperature rate constant

for hydrogen or deuterium, respectively, at ∆G0 ) 0 and λR
L

with L ) H or D denotes λ00
(R) for hydrogen or deuterium,

respectively. Equation 9 leads to the following approximate
forms of ln[KIE] and KIE:

ln[KIE]) ln[KIE0]-
(∆G0)2(λR

D - λR
H)

4kBT(λ+ λR
H)(λ+ λR

D)
(10)

KIE)KIE0exp[- (∆G0)2(λR
D - λR

H)

4kBT(λ+ λR
H)(λ+ λR

D)] (11)

where KIE0 is the KIE evaluated at ∆G0 ) 0:

KIE0 )
|SH|2

|SD|2
exp[- 2kBT

MΩ2
(RD

2 -RH
2 )]�λ+ λR

D

λ+ λR
H

exp[λR
D - λR

H

4kBT ]
(12)

Equation 11 differs from eq 7 because the derivation of eq
11 is not based on the assumption that λ00

(R) ) 0, which was
assumed in the derivation of eq 7. As will be shown below, the
contributions from excited vibronic states can lead to qualitative
deviations from the quadratic behavior in eqs 9 and 10,
particularly for the rate constant. A similar analysis was
performed previously for vibrationally nonadiabatic proton
transfer reactions.45,46 Note that this driving force dependence
of the KIE will not be evident using the kUK rate constant
expression given in eq 6.

The preceding analyses of the dependence of the KIE on
temperature and driving force are based on the rate constant
expression in the high-temperature (low-frequency) regime for
the R-mode. In the low-temperature (high-frequency) regime
for the R-mode, the KIE obtained from eq 5 including
contributions from only the ground reactant and product vibronic
states is:

KIElowT )
SH

2

SD
2

exp[-p(RD
2 -RH

2 )

2MΩ ] (13)

As in the high-temperature regime, the magnitude of the KIE
will increase as the equilibrium R value and the frequency Ω
increase. In this low-temperature regime, however, the KIE is
independent of both temperature and driving force when only
ground states contribute. As shown below, contributions from
excited vibronic states can lead to temperature dependence of
the KIE in the low-temperature regime for the R-mode.

III. Model Calculations and Discussion

A. Model System. In this section, we analyze the rate
constant expressions given above by calculating the rates and
KIEs for model PCET systems. For simplicity, the reactant and
product proton potential energy curves are described by Morse
potentials of the form

EXY )DXY(1- e-�XY(RXY-RXY
o ))2 (14)

In all model systems studied in the present paper, the proton is
assumed to transfer from a carbon atom to an oxygen atom.
Thus, the Morse potential for the reactant corresponds to a C-H
vibrational mode, and the Morse potential for the product
corresponds to an O-H vibrational mode. We chose parameters
that are typical for these types of vibrational modes.44 The values
for the dissociation energies DCH and DOH were chosen to be
77 and 82 kcal/mol, and the values of RCH

o and ROH
o were chosen

to be 1.09 and 0.96 Å. The values for parameters �CH and �OH

were chosen to be 2.068 and 2.442 Å-1 to reproduce the typical
C-H and O-H frequencies of 2900 and 3500 cm-1. These
Morse parameters may be varied to describe other vibrational
modes, but the qualitative trends discussed below will not be
significantly altered. The other parameters in the rate constant
expressions are varied in these model systems. Unless otherwise
stated, M ) 100 amu, λ ) 30 kcal/mol, ∆G 0 ) -5 kcal/mol,
T ) 303 K, Ω ) 150 cm-1, and Rj ) 2.7 Å.

The hydrogen and deuterium vibrational wave functions are
calculated by solving a one-dimensional Schrödinger equation
for the hydrogen or deuterium moving in the reactant and
product Morse potentials. Analytical solutions are available for
the eigenfunctions of Morse potentials.47 The Morse potentials
and corresponding hydrogen and deuterium wave functions are
depicted in Figure 1a. In this model, the Morse potentials are
positioned so that the minima are separated by a distance of Rj
- RCH

o - ROH
o . The overlaps Sµν

(0) between the reactant and product
vibrational wave functions at Rj are calculated numerically. The
parameters Rµν are determined for each pair of vibronic states
by calculating the numerical derivatives of the natural logarithm
of the corresponding overlap integrals with respect to R at Rj .
For Rj ) 2.7 Å, R00 ) 17.80 Å-1 and 24.79 Å-1 for hydrogen
and deuterium, respectively. These values vary slightly with Rj:
at Rj ) 2.8 Å, R00 ) 19.77 Å-1 and 27.47 Å-1 for hydrogen
and deuterium, respectively. These values also vary slightly for
different pairs of states: at Rj ) 2.7 Å, R01 ) 15.55 Å-1 and
22.58 Å-1 for hydrogen and deuterium, respectively.

B. Comparison of rate constant expressions. As discussed
above, the rate constant kquant in eq 2 is valid for all frequency
regimes of the R-mode, whereas khighT in eq 4 is valid only in
the high-temperature (low-frequency) limit for the R-mode, and
klowT in eq 5 is valid only in the low-temperature (high-
frequency) limit for the R-mode. Figure 2a depicts the depen-
dence of the KIE on the frequency Ω of the R-mode for all
three of these rate constant expressions. This figure illustrates
that khighT agrees well with kquant for low R-mode frequencies,
and klowT agrees well with kquant for high R-mode frequencies.
As discussed above, the simple KIE in eq 7 predicts the increase
of the KIE as the frequency increases for the high-temperature
limit of the R-mode. From a physical perspective, the KIE
increases as the frequency increases because a higher frequency
limits the ability of the system to sample smaller R values, and
larger R values are associated with greater KIEs.

Figure 2b depicts the dependence of the KIE on the
temperature for two different R-mode frequencies, Ω ) 150
cm-1 and Ω ) 850 cm-1, with equilibrium R values of Rj ) 2.7
and 2.6 Å, respectively. For the lower R-mode frequency, the
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temperature dependence of the KIE is similar using kquant and
khighT. For the higher R-mode frequency, the temperature
dependence of the KIE is similar using kquant and klowT. A
comparison of Figures 2a and 2b illustrates that decreasing Rj
from 2.7 to 2.6 Å for Ω ) 850 cm-1 significantly decreases
the KIE, mainly due to the decrease in the ratio of the hydrogen
and deuterium overlaps. Typically a higher-frequency R-mode
is associated with a stronger hydrogen bond, which would have
a smaller equilibrium R value and therefore a lower KIE.

Figure 3 compares the KIE calculated using the rate constant
kUK to the KIE calculated using the rate constants kquant, khighT,
and klowT. As discussed above, kUK and khighT become identical
when λµν

(R) ) 0 and the overlap decays exponentially with R near
its equilibrium value. Figure 3a depicts the frequency depen-
dence of the KIE for all of these rate constant expressions with
M ) 100 amu. The KIEs obtained from kquant and khighT converge
to the same value at low frequencies, but the KIE obtained from
kUK approaches a different value at low frequencies. This
discrepancy arises because kquant and khighT are based on the
assumption that the vibronic coupling decreases exponentially
with R, which is valid only near the equilibrium R value, and
a smaller frequency enables sampling of a wider range of R
values. Although not shown in this figure, the KIEs obtained
from kUK and khighT with λµν

(R) ) 0 are virtually identical at high
frequencies, where R is nearly fixed to its equilibrium value.
Furthermore, the KIEs obtained from khighT with λµν

(R) ) 0 agree
with those calculated using kquant in the high-frequency R-mode
limit because the expression for khighT given in eq 4 becomes
similar to the expression for klowT given by eq 5 in this limit.
Figure 3b depicts the same curves as Figure 3a with M ) 20
amu. Similar trends are exhibited in both figures, but the
discrepancies between kquant and both khighT and kUK are more
pronounced for the smaller effective mass because of the larger
λµν

(R).

C. Dependence of KIE on System Properties. In this
subsection, we examine the dependence of the KIE on the
physical properties of the system. First we investigate the impact
of the reorganization energy λ on the magnitude and temperature
dependence of the KIE. These results were calculated using the
rate constant expression given in eq 2. Figure 4 indicates that
the KIEs are virtually identical for reorganization energies in
the range of 10-40 kcal/mol. The magnitude of the KIE does
not change monotonically as λ is increased because of changes
in the relative contributions from excited states.

Excited vibronic states often contribute significantly to the
overall rate of PCET reactions. Given the reorganization energy
and the driving force, we can generate the standard parabolic
Marcus free energy curves as functions of a collective solvent
coordinate.31,32 Figure 5 depicts these free energy curves, as well
as the reactant and product proton potential energy curves and
associated proton vibrational wave functions, for the lowest three
reactant and product vibronic states. Note that the energy
splittings between the ground and excited vibronic states are
determined by the energy splittings of the proton vibrational
states in the Morse potentials for the reactant and product states.
For reasons discussed above, the contributions of excited

Figure 2. (a) KIE as a function of proton donor-acceptor mode
frequency Ω for Rj ) 2.7 Å at T ) 303 K calculated with kquant (solid),
khighT (dotted), and klowT (dashed) for a model system with λ ) 30 kcal/
mol, ∆G 0 ) -5 kcal/mol, and M ) 100 amu. (b) KIE as a function
of 1000/T for Ω ) 150 cm-1 and Rj ) 2.7 Å obtained with kquant and
khighT (black, lower curves) and for Ω ) 850 cm-1 and Rj ) 2.6 Å
obtained with kquant and klowT (red, upper curves). The line types are
the same as in (a), and the two upper curves are virtually indistinguish-
able.

Figure 3. KIE as a function of frequency calculated with kquant (solid),
khighT (dotted), klowT (dashed), and kUK (dot-dashed) for a model system
with λ ) 30 kcal/mol, ∆G0 ) -5 kcal/mol, Rj ) 2.7 Å, T ) 303 K,
and (a) M ) 100 amu and (b) M ) 20 amu.

Figure 4. KIE calculated with kquant for a model system with Rj ) 2.7
Å, Ω ) 150 cm-1, M ) 100 amu, and ∆G0 ) -5 kcal/mol for different
values of the reorganization energy λ. In units of kcal/mol, λ ) 10
(green), 20 (red), 30 (black), and 40 (blue). The four curves are virtually
indistinguishable.
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vibronic states tend to decrease the KIE because the overlaps
between excited vibrational wave functions are larger than the
overlap between the ground reactant and product proton
vibrational wave functions.

The qualitative analysis of the contributions from excited
vibronic states is simplified by using the high-temperature rate
constant expression given in eq 4. The relative contribution of
each pair of reactant/product vibronic states is determined by a
balance among the Boltzmann probability Pµ for the reactant
state, the vibronic coupling Vµν

(0) ) VelSµν
(0), and the free energy

barrier ∆Gµν
q ) (∆Gµν

0 +λ+λµν
(R))2/4(λ+λµν

(R)). The reorganization
energy λ, driving force ∆G0, and free energy barrier ∆Gµν

q for
the ground reactant and product vibronic states are depicted in
Figure 5. The free energy barrier contributes a factor of
exp [-∆Gµν

+ /kBT] to the rate constant for each pair of reactant/
product vibronic states. The Boltzmann probability strongly
favors the ground reactant state. The vibronic coupling favors
excited vibronic states because the overlaps are greater for
excited-state proton vibrational wave functions. In the normal

Marcus regime, the free energy barrier favors the ground product
state when the reaction initiates from the ground reactant state.
The relative contributions of the pairs of reactant/product
vibronic states are determined from a complex interplay among
these various factors.

We examined the contributions from the excited vibronic
states for three model systems with ∆G0 ) -5, 0, and +5
kcal/mol. The detailed analysis of the various terms for both
hydrogen and deuterium is provided in Table 1. For all three
model systems, the ground vibronic states dominate for hydro-
gen, and excited vibronic states contribute much more for
deuterium. This difference can be understood in the context of
Figure 6, which depicts the free energy curves for hydrogen
and deuterium. In this figure, the ground vibronic states are
chosen to be at the same energies for hydrogen and deuterium,
but the first excited vibronic states are lower for deuterium than
for hydrogen. As a result, the free energy barrier for the (0/1)
pair of vibronic states (i.e., the pair corresponding to the ground
reactant and first excited product state) is lower for deuterium

Figure 5. Free energy curves as functions of a collective solvent coordinate (center frame) with the proton potential energy curves and associated
hydrogen vibrational wave functions on the left (reactant) and right (product) for a model system with λ ) 30 kcal/mol and ∆G0 ) -5 kcal/mol.
The lowest three reactant vibronic states are shown in blue, and the lowest three product vibronic states are shown in red. The splittings between
the free energy curves correspond to the splittings between the proton vibrational energy levels for the Morse potentials. The reorganization energy
λ, driving force ∆G0, and free energy barrier ∆G00

q for the ground reactant and product vibronic states are identified.

TABLE 1: Analysis of the Contributions of Pairs of Reactant/Product Vibronic States µ/ν for a Model System with λ ) 30
kcal/mol, Rj ) 2.7 Å, M ) 100 amu, Ω ) 150 cm-1, and T ) 303 Ka

∆G0 isotope µ ν
contribution
to rate (%) Pµ ∆Gµν

0 ∆Gµν
q exp[-�∆Gµν

q ] |Sµν
(0)|2

-5 H 0 0 96.59 0.999996 -5.00 5.21 1.75 × 10-4 1.82 × 10-6

0 1 1.05 0.999996 2.53 8.82 4.36 × 10-7 5.59 × 10-5

1 0 0.68 0.000004 -14.10 2.11 3.03 × 10-2 6.80 × 10-5

1 1 0.03 0.000004 -6.76 4.57 5.03 × 10-4 1.30 × 10-3

D 0 0 79.47 0.999875 -5.00 5.21 1.75 × 10-4 3.27 × 10-9

0 1 10.31 0.999875 -0.41 7.71 2.76 × 10-6 1.50 × 10-7

1 0 7.63 0.000125 -11.56 2.39 9.03 × 10-3 1.86 × 10-7

1 1 1.90 0.000125 -6.15 4.74 3.80 × 10-4 6.15 × 10-6

0 H 0 0 95.72 0.999996 0.00 7.50 3.89 × 10-6 1.82 × 10-6

0 1 0.30 0.999996 7.53 11.74 3.42 × 10-9 5.59 × 10-5

1 0 1.89 0.000004 -9.10 3.64 2.37 × 10-3 6.80 × 10-5

1 1 0.02 0.000004 -1.57 6.37 1.39 × 10-5 1.30 × 10-3

D 0 0 77.56 0.999875 0.00 7.50 3.89 × 10-6 3.27 × 10-9

0 1 4.10 0.999875 5.41 10.45 2.91 × 10-8 1.50 × 10-7

1 0 15.62 0.000125 -6.56 4.58 4.97 × 10-4 1.86 × 10-7

1 1 1.58 0.000125 -1.15 6.94 9.91 × 10-6 6.15 × 10-6

5 H 0 0 92.07 0.999996 5.00 10.21 4.34 × 10-8 1.82 × 10-6

0 1 0.08 0.999996 12.53 15.07 1.34 × 10-11 5.59 × 10-5

1 0 5.13 0.000004 -4.10 5.59 9.32 × 10-5 6.80 × 10-5

1 1 0.02 0.000004 3.43 9.31 1.92 × 10-7 1.30 × 10-3

D 0 0 66.01 0.999875 5.00 10.21 4.34 × 10-8 3.27 × 10-9

0 1 1.42 0.999875 10.41 13.61 1.53 × 10-10 1.50 × 10-7

1 0 27.88 0.000125 -1.56 6.74 1.37 × 10-5 1.86 × 10-7

1 1 1.15 0.000125 3.85 9.55 1.29 × 10-7 6.15 × 10-6

a Free energies are given in units of kcal/mol.
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than for hydrogen, leading to a greater contribution from this
pair of states for deuterium. In addition, the Boltzmann
probability for the first excited reactant state is significantly
greater for deuterium than for hydrogen, leading to a greater
contribution from the (1/0) pair of vibronic states for deuterium.
The contributions from excited vibronic states are greater for
the model system with ∆G0 ) 5 kcal/mol, leading to a lower
KIE.

We emphasize that the excited reactant states may contribute
significantly to the overall PCET rate. For these model systems,
the excited reactant state contributes significantly for deuterium.
Although the Boltzmann probability is small for this excited
state, the free energy barrier is significantly lower for the (1/0)
pair of reactant/product vibronic states than for the (0/0) pair
of reactant/product vibronic states. This difference in free energy
barriers for the (0/0) and (1/0) pairs of reactant/product vibronic
states is evident in Figure 6. In addition, the vibronic coupling
is larger for the excited states. For the model system with ∆G0

) 5 kcal/mol, the first excited reactant state contributes 28% to
the overall rate for deuterium. Thus, in practice, the rate constant
expressions should be converged with respect to the numbers
of both reactant and product vibronic states.

As discussed above, the magnitude and temperature depen-
dence of the KIE are primarily dictated by the equilibrium proton
donor-acceptor distance Rj and the R-mode vibrational fre-
quency Ω. This dependence can be analyzed in the context of
eqs 7 and 8 corresponding to the KIE and the derivative of the
ln[KIE] with respect to the temperature. The curves in Figure
7 are calculated using the full form of the rate constant given
in eq 2, and the approximate forms in eqs 7 and 8 are used
only for the purposes of analysis. Figure 7a depicts the
temperature dependence of the ln[KIE] for Rj ) 2.7 and 2.8 Å
and Ω ) 140 and 180 cm-1. For a fixed frequency of Ω ) 140
cm-1, the magnitude of the KIE increases as Rj increases from
2.7 to 2.8 Å because the ratio of the hydrogen and deuterium
overlaps in eq 7 increases. For a fixed Rj value of 2.7 Å, the
magnitude of the KIE increases as Ω increases, as predicted by
eq 7. This trend is physically reasonable because the higher
frequency restricts the value of R to larger values corresponding
to a greater ratio of the hydrogen and deuterium overlaps. In
addition, the temperature dependence of the ln[KIE] decreases
as Ω increases for fixed Rj , as predicted by eq 8. This trend is
more evident in Figure 7b, which depicts the temperature
dependence of the ln[KIE] for Rj ) 2.7 and Ω ) 150 and 300
cm-1, because the difference in frequencies is greater.

Furthermore, the equilibrium R value and the proton
donor-acceptor frequency cannot usually be varied indepen-

dently when designing experimental systems. Typically the
frequency will increase as the equilibrium R value decreases
because the hydrogen bond is stronger for shorter distances.
When the frequency varies even slightly, the KIE could be
observed to either increase or decrease as Rj increases. For
example, Figure 7a depicts a comparison of two systems in
which Rj ) 2.7 Å and Ω ) 180 cm-1 for the first system and Rj
) 2.8 Å and Ω ) 140 cm-1 for the second system. As shown
in this figure, the first system has a higher KIE for higher
temperatures, while the second system has a higher KIE for
lower temperatures. This range of temperatures is close enough
to room temperature to be experimentally accessible for many
systems. From the experimental perspective, the KIE could be
observed to increase or decrease with Rj , depending on the
temperature, change in frequency, and other characteristics of
the system.

We emphasize that the general trends based on the analysis
of eqs 7 and 8 will not always be followed. As discussed above,
excited vibronic states often contribute significantly to the
overall PCET rate, but eqs 7 and 8 are based on the assumption
that only the ground vibronic states are contributing. Since the
contributions from excited states depend on a complex interplay
among several factors, including the Boltzmann probability, the
vibronic coupling, and the free energy barrier, the relative
contributions will vary with temperature and will differ for
hydrogen and deuterium. In this case, the temperature depen-
dence of the KIE is determined by summing over all pairs of
states for hydrogen, summing over all pairs of states for
deuterium, and subsequently taking the ratio of these two rate
constants. In addition, eqs 7 and 8 are only valid in the high-
temperature (low-frequency) regime for the R-mode. For systems
that are not in the high-temperature or low-temperature regime,
we must use eq 2 to evaluate the rate constants for hydrogen
and deuterium, and the prediction of general qualitative trends
is more difficult.

In some cases, the KIE has been observed experimentally to
increase with temperature.15 For the rate constant expressions

Figure 6. Free energy curves as functions of a collective solvent
coordinate for hydrogen (solid) and deuterium (dashed) for a model
system with λ ) 30 kcal/mol and ∆G0 ) 5 kcal/mol. The lowest two
reactant and the lowest two product states are shown for both hydrogen
and deuterium. Since the ground reactant state is chosen to have the
same absolute energy for hydrogen and deuterium, the ground reactant
and product states for deuterium exactly overlay those for hydrogen
and therefore are not distinguishable.

Figure 7. KIE calculated with kquant for a model system with λ ) 30
kcal/mol, ∆G0 ) -5 kcal/mol, and M ) 100 amu. (a) Rj ) 2.7 Å and
Ω ) 140 cm-1 (black), Rj ) 2.7 Å and Ω ) 180 cm-1 (red), and Rj )
2.8 Å and Ω ) 140 cm-1 (blue). (b) Rj ) 2.7 Å and Ω ) 150 cm-1

(black), Rj ) 2.7 Å and Ω ) 300 cm-1 (red). The curves are labeled
according to the Rj/Ω values in units of Å and cm-1.
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in the high-temperature (low-frequency) limit for the R-mode
(i.e., eqs 4 and 6), the KIE tends to decrease with temperature
because of the exponential prefactor that depends on temper-
ature, as evident in eq 7. Even accounting for contributions from
excited vibronic states does not seem to reverse this qualitative
trend. On the other hand, for the more general rate constant
expression given in eq 2, the KIE will increase with temperature
for certain choices of parameters. Figure 8 depicts the temper-
ature dependence of the KIE determined from eq 2 for a system
with λ ) 3 kcal/mol, ∆G0 )-6.5 kcal/mol, and Ω ) 600 cm-1.
This system is in the low-temperature (high-frequency) regime
for the R-mode and therefore corresponds to a PCET system
with a strong, rigid hydrogen bond. This system is also in the
Marcus inverted region, where -∆G0 > λ. The reorganization
energy is quite low, corresponding to a reaction occurring in a
solvent with low dielectric constant. An analysis of this model
system indicates that the (0/0) and (0/1) pairs of reactant/product
vibronic states contribute 71 and 29%, respectively, for hydro-
gen, and the (0/0) and (0/1) pairs of reactant/product vibronic
states contribute 6 and 91%, respectively, for deuterium, with
the remaining contributions arising from other pairs of states.
A detailed analysis of a specific system exhibiting this type of
temperature dependence of the KIE will be discussed else-
where.48

Finally, we analyze the dependence of the rate constant and
KIE on the driving force ∆G0. Figure 9 depicts the dependence
of the rate constant and the corresponding ln[KIE] on driving
force for a model system with λ ) 20 kcal/mol. These curves
were generated using the expression for khighT given in eq 4,
converging the results with respect to the number of reactant
and product vibronic states. For comparison, Figure 9 also
depicts the results when only the ground reactant and product
vibronic states are included. For the analysis, we refer to eqs 9
and 10, which are approximate forms of the rate constant and
ln[KIE] including only ground reactant and product vibronic
states. We emphasize that the curves in Figure 9 are calculated
using the full form of the rate constant given in eq 4, and the
approximate forms in eqs 9 and 10 are used only for the
purposes of analysis. Figure 9 illustrates the quadratic depen-
dence of the rate constant and ln[KIE] on the driving force when
only the ground reactant and product vibronic states are
included. In this case, the rate constant exhibits a maximum at
-∆G0 ) λ + λ00

(R), and the ln[KIE] exhibits a maximum at ∆G0

) 0. Since λ ) 20 kcal/mol in this model system, the curvature
is so small for ln[KIE] that the quadratic dependence of ln[KIE]
on driving force is barely visible when only the ground states
are included.

When excited vibronic states are included, however, the
qualitative behavior of both the rate constant and ln[KIE] is
altered. The rate constant does not decrease as ∆G0 becomes

more negative because excited vibronic product states associated
with low free energy barriers and relatively large vibronic
couplings become accessible. For this reason, Figure 9a exhibits
an increase in the rate constant as the driving force becomes
more negative. The KIE also exhibits qualitatively different
behavior when excited vibronic states are included. Typically
the contributions from excited vibronic states increase as ∆G0

becomes more positive or more negative (i.e., as the reaction
becomes more asymmetric). Figure 9c illustrates that the (0/0)
pair dominates at ∆G0 ≈ 0, the (1/0) pair dominates as the
reaction becomes more endergonic, and the (2/0) pair dominates
as the reaction becomes even more endergonic. Similarly, the
(0/1) pair dominates as the reaction becomes more exergonic,
and the (0/2) pair dominates as the reaction becomes even more
exergonic. As discussed above and illustrated in Figure 1b, the
KIE tends to decrease as the contributions of excited vibronic
states increase because the excited vibronic states are associated
with larger overlaps and therefore a smaller ratio of hydrogen
to deuterium overlaps. As a result, the ln[KIE] decreases more
rapidly for both positive and negative driving forces when
excited vibronic states are included. Figure 9b illustrates this
phenomenon for the model system studied. Note that the

Figure 8. Temperature dependence of the KIE calculated with kquant

for a model system with λ ) 3 kcal/mol, ∆G0 ) -6.5 kcal/mol, Rj )
2.7 Å, Ω ) 600 cm-1, and M ) 100 amu.

Figure 9. Driving force dependence of (a) the rate constant kH
highT, (b)

the associated KIE, and (c) the contributions of pairs of reactant/product
vibronic states for a model system with λ ) 20 kcal/mol, Rj ) 2.7 Å,
Ω ) 150 cm-1, M ) 100 amu, and T ) 303 K. In (a) and (b), the red
curve corresponds to the calculation including only the ground reactant
and product vibronic states, and the black curve corresponds to the
calculation that is converged with respect to excited vibronic states. In
(c), the color code for the pairs of reactant/product vibronic states is as
follows: 0/0 (black), 1/0 (blue), 2/0 (magenta), 0/1 (red), and 0/2 (green).
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maximum of ln[KIE] is not at exactly ∆G0 ) 0 because the
proton transfer interface is asymmetric (i.e., different Morse
potentials are used for reactant and product states). For this
model, the ground-state contributions are greatest for slightly
negative driving forces due to the complex interplay of various
factors in the rate constant expression. Qualitatively similar
behavior is observed in the high-frequency regime for the
R-mode using klowT. In this regime, the KIE is rigorously
independent of driving force when only the ground reactant and
product vibronic states are included, as indicated by eq 13, but
the KIE depends on driving force in a similar manner as shown
in Figure 9b when excited vibronic states are included.

Similar behavior of the KIE was observed previously for
vibrationally nonadiabatic proton transfer (PT) reactions.45,46 An
important difference between vibrationally nonadiabatic PT and
the PCET reactions discussed here is that typically vibrationally
nonadiabatic PT is electronically adiabatic (i.e., the reaction
occurs on the electronic ground state). In contrast, the PCET
reactions discussed here are electronically nonadiabatic and
occur on two different electronic surfaces corresponding to the
two electron transfer states. As a result, the nature of the
nonadiabatic coupling is different for these two types of
reactions.38 In addition, the solvent reorganization is typically
much smaller for PT than for PCET because the proton is
transferred a shorter distance than the electron. This difference
in solvent reorganization energies leads to qualitative differences
in the dependence of the KIE on driving force, particularly when
only the ground states contribute to the rates.

IV. Conclusions

In this paper, we have compared the KIEs obtained with
different rate constant expressions for PCET reactions. The KIEs
obtained from rate constants khighT and klowT rigorously approach
those obtained from kquant in the low-frequency and high-
frequency R-mode limits, respectively. The KIEs obtained from
the rate constant kUK behave qualitatively similar to those
obtained from khighT and kquant in the low-frequency R-mode
regime. Analytical expressions for the dependence of the KIE
on both temperature and driving force were derived including
only the ground reactant and product vibronic states.

While these simple analytical expressions are useful for
predicting general trends, our calculations have illustrated the
importance of converging the rate constants with respect to the
numbers of both reactant and product vibronic states. Excited
vibronic state contributions are typically greater for deuterium
than for hydrogen and decrease the magnitude of the KIE
because of the smaller ratio of the hydrogen to deuterium
overlaps for excited states. Although the excited reactant
vibronic state has a smaller Boltzmann probability than the
ground state, the free energy barrier and coupling terms may
be large enough to result in a significant contribution from the
excited reactant state. Moreover, the inclusion of a sufficient
number of product vibronic states is particularly important when
studying the driving force dependence of the KIE for very
negative driving forces.

In addition, we analyzed the dependence of the magnitude
of the KIE on the physical properties of the PCET system.
Typically the magnitude of the KIE increases as the equilibrium
proton donor-acceptor distance increases if all other parameters
remain fixed. Moreover, typically the magnitude of the KIE
increases as the proton donor-acceptor mode frequency in-
creases if all other parameters remain fixed. In experimentally
studied systems, often the proton donor-acceptor mode fre-
quency increases as the equilibrium R value decreases, however,

leading to the possibility of observing the KIE to either increase
or decrease with the equilibrium R value. The magnitude of
the KIE is relatively insensitive to changes in the solvent
reorganization energy within a physically reasonable range.

Furthermore, we studied the dependence of the KIE on the
temperature. In the low-frequency regime for the R-mode, the
KIE decreases as the temperature is increased, and the temper-
ature dependence of the ln[KIE] typically decreases as the proton
donor-acceptor mode frequency increases. In the high-
frequency regime for the R-mode, the KIE is independent of
the temperature when only the ground reactant and product
vibronic states contribute to the rates, but contributions from
excited vibronic states could lead to either an increase or a
decrease of the KIE with temperature.

We also studied the dependence of the rate constant and the
KIE on the driving force. In contrast to the inverted Marcus
region behavior predicted and observed experimentally for
electron transfer, our calculations indicate that the PCET
nonadiabatic rate constant increases as the driving force becomes
more negative because excited vibronic product states associated
with low free energy barriers and relatively large vibronic
couplings become accessible. Moreover, the ln[KIE] is a
maximum near zero driving force and decreases significantly
as the driving force becomes more positive or negative because
the contributions from excited vibronic states increase as the
reaction becomes more asymmetric, and contributions from
excited vibronic states decrease the KIE.

These calculations provide physical insights that are directly
relevant to experimental data. For example, recently the
magnitude of the KIE was observed experimentally to decrease
with increasing proton donor-acceptor distance in phenol-base
complexes, where the proton donor-acceptor distance was
increased by structural modification.49 Our calculations suggest
a possible explanation for this observation in terms of a decrease
in the proton donor-acceptor frequency as the proton donor-
acceptor distance increases. These two effects impact the KIE
in opposite directions, and the KIE may be observed to decrease
with increasing proton donor-acceptor distance when the lower
frequency dominates the observed trend. In another set of
experiments, the KIE for the PCET reaction associated with
oxidation of a ubiquinol analogue in acetonitrile was observed
to increase as the temperature increases.15 Our calculations
provide an explanation for this observation in terms of a rigid
hydrogen bond, which corresponds to a high proton donor-
acceptor frequency, in conjunction with the low dielectric
constant of acetonitrile, which corresponds to small solvent
reorganization energy. These two properties allow the possibility
of this type of unusual temperature dependence.48 Finally, the
dependence of the rate constant and KIE on the driving force
has been studied experimentally for a wide range of PCET
systems.11,50-52 Our model calculations provide a theoretical
framework for the interpretation of these types of experimental
studies. Overall, these calculations on model systems assist in
the interpretation of experimental data and provide predictions
of trends in the KIE that can be tested experimentally.
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